TOML vs TONL: Feature Comparison for Modern AI Applications
Compare TOML vs TONL: query API, schema validation, streaming, and advanced optimization for LLM-powered applications.
TOML shines as a configuration format with its human-friendly syntax. TONL takes a different approach: token efficiency with enterprise features like query APIs, schema validation, and streaming. Let's compare these formats for modern AI-powered applications.
The Contenders
TOML
Pros:
- Industry standard for configuration.
- Clear [section] headers.
- Native datetime support.
- Mature ecosystem and tooling.
Cons:
- No query capabilities.
- No schema validation built-in.
- Verbose for arrays of tables.
- No streaming support.
TONL
Pros:
- Built-in JSONPath-like query API.
- TSL schema validation (13 constraints).
- Native streaming for large files.
- Advanced optimization strategies.
Cons:
- No native datetime type.
- Not a standard config format.
- Newer ecosystem.
Query Capabilities
TOML has no built-in query language. TONL includes powerful querying out of the box.
TOML Data Access (manual traversal):
import toml
# Parse TOML
config = toml.load('config.toml')
# Manual traversal
users = config['users']
admins = [u for u in users if u['role'] == 'admin']
avg_age = sum(u['age'] for u in users) / len(users)TONL Query API (built-in):
import { parse } from 'tonl';
const doc = parse(tonlString);
// JSONPath-like queries
const admins = doc.query('users[?(@.role == "admin")]');
// Built-in aggregation
const avgAge = doc.avg('users[*]', 'age');
const totalSales = doc.sum('orders[*]', 'amount');
const byRole = doc.groupBy('users[*]', 'role');
// Fuzzy search
import { fuzzySearch } from 'tonl/query';
const matches = fuzzySearch('Jon', doc.query('users[*].name'));Schema Validation
TOML relies on external tools for validation. TONL has TSL built in.
TOML Validation (external library):
# Requires external tools like:
# - taplo (Rust-based TOML toolkit)
# - toml-validator
# - Custom validation code
# No standard schema format existsTONL Schema (TSL - native):
@schema v1
@strict true
Server: obj
host: str required
port: u32 required min:1 max:65535
Database: obj
connection: str required pattern:^postgres://
pool_size: u32 default:10 min:1 max:100
Config: obj
server: Server required
database: Database required
debug: bool default:falseSyntax Comparison
TOML (182 bytes, ~90 tokens):
[[users]]
id = 1
name = "Alice"
role = "admin"
age = 32
[[users]]
id = 2
name = "Bob"
role = "user"
age = 28TONL (110 bytes, ~49 tokens - 46% reduction):
#version 1.0
users[2]{id:u32,name:str,role:str,age:u32}:
1, Alice, admin, 32
2, Bob, user, 28Streaming Comparison
| Feature | TOML | TONL |
|---|---|---|
| Streaming parser | No | Yes |
| Multi-GB file support | Memory-limited | Streaming chunks |
| Query during stream | No | Yes |
| Partial document access | Load entire file | Seek + query |
Optimization Strategies
TONL includes built-in optimization that TOML lacks:
| Strategy | Description | Savings |
|---|---|---|
| Dictionary Encoding | String deduplication | 30-50% |
| Delta Encoding | Sequential value compression | 40-60% |
| Bit Packing | Boolean/small int compression | 87.5% |
| Adaptive Optimizer | Auto-selects best strategy | Variable |
Performance Benchmarks
| Metric | TOML | TONL | Improvement |
|---|---|---|---|
| Token Count (100 records) | 3,500 | 1,890 | 46% |
| Encoding Speed | 1.0x | 12-15x | 12-15x faster |
| Query Execution | N/A (manual) | Native | Built-in |
| Monthly Cost (10K req) | $350 | $189 | $1,932/yr |
Indexing Comparison
TONL supports indexes for fast lookups. TOML has no indexing capability.
// TONL indexing
const doc = parse(tonlString, {
indexes: {
byId: { type: 'hash', path: 'users[*].id' },
byAge: { type: 'btree', path: 'users[*].age' }
}
});
// O(1) lookup
const user = doc.getByIndex('byId', 123);
// Range query
const adults = doc.rangeByIndex('byAge', 18, 65);When to Use Which?
Stick with TOML if:
- You're writing standard config files (pyproject.toml, Cargo.toml).
- Native datetime support is essential.
- Section headers improve your workflow.
- You're in a TOML-centric ecosystem (Rust, Python packaging).
Switch to TONL if:
- You need query capabilities without external tools.
- Schema validation is required.
- You're processing large datasets with streaming.
- Token efficiency matters for LLM applications.
- You want indexing for fast lookups.
Final Verdict
TOML remains the standard for application configuration with its clean section headers and datetime support. For data-intensive LLM applications requiring queries, validation, and streaming, TONL provides enterprise-grade capabilities with 46% token savings.
For simpler token optimization without advanced features, see our TOML vs TOON comparison. Learn more about TONL features or explore API cost optimization strategies.