YAML vs TONL: Complete Feature Comparison for AI Development
Compare YAML vs TONL for LLM applications: advanced features, performance benchmarks, query capabilities, and when to use each format.
YAML is beloved for DevOps configuration, but lacks the advanced data capabilities modern AI applications demand. TONL combines token efficiency with powerful query APIs, schema validation, and streaming. Let's compare these formats for enterprise LLM development.
The Contenders
YAML
Pros:
- Human-readable with comments support.
- Anchors and aliases for DRY configs.
- Multi-document support.
- DevOps industry standard.
Cons:
- No built-in query capabilities.
- No schema validation language.
- Parsing edge cases and gotchas.
- No streaming support.
TONL
Pros:
- Built-in JSONPath-like query API.
- TSL schema validation (13 constraints).
- Native streaming for large files.
- Advanced optimization strategies.
Cons:
- No comments support.
- No anchors or aliases.
- No multi-document support.
- Newer ecosystem.
Query Capabilities
YAML has no query language. TONL provides comprehensive querying out of the box.
YAML Data Access (manual or external tools):
import yaml
# Parse YAML
with open('data.yaml') as f:
data = yaml.safe_load(f)
# Manual traversal
users = data['users']
admins = [u for u in users if u['role'] == 'admin']
# Or use external tools like yq
# yq '.users[] | select(.role == "admin")' data.yamlTONL Query API (built-in):
import { parse } from 'tonl';
const doc = parse(tonlString);
// JSONPath-like queries - native
const admins = doc.query('users[?(@.role == "admin")]');
const names = doc.query('users[*].name');
// Aggregation - built-in
const avgAge = doc.avg('users[*]', 'age');
const totalRevenue = doc.sum('orders[*]', 'amount');
const byDepartment = doc.groupBy('employees[*]', 'dept');
// Advanced features
import { fuzzySearch, soundsLike } from 'tonl/query';
fuzzySearch('Jon', doc.query('users[*].name'));
soundsLike('Smith', 'Smyth'); // Phonetic matching
import { parseTemporalLiteral } from 'tonl/query';
parseTemporalLiteral('@now-7d'); // Temporal queriesSchema Validation
YAML relies on JSON Schema or external tools. TONL has TSL built in.
YAML Validation (JSON Schema):
{
"$schema": "...",
"type": "object",
"properties": {
"users": {
"type": "array",
"items": {
"type": "object",
"properties": {
"id": {
"type": "integer"
},
"email": {
"type": "string",
"format": "email"
}
},
"required": ["id"]
}
}
}
}TONL Schema (TSL):
@schema v1
@strict true
User: obj
id: u32 required
email: str required
pattern:email
lowercase:true
age: u32? min:13 max:150
roles: list<str>
required min:1
unique:true
users: list<User> requiredTSL is more concise and includes 13 built-in constraints like pattern, min, max, unique, and lowercase.
Syntax Comparison
YAML (156 bytes, ~80 tokens):
users:
- id: 1
name: Alice
role: admin
- id: 2
name: Bob
role: userTONL (105 bytes, ~49 tokens - 39% reduction):
#version 1.0
users[2]{id:u32,name:str,role:str}:
1, Alice, admin
2, Bob, userStreaming Comparison
| Feature | YAML | TONL |
|---|---|---|
| Streaming parser | Limited (libyaml) | Native |
| Multi-GB file support | Memory issues | Streaming chunks |
| Query during stream | No | Yes |
| Validation during stream | No | Yes |
Indexing Capabilities
YAML has no indexing. TONL supports multiple index types:
const doc = parse(tonlString, {
indexes: {
// O(1) exact lookups
byId: { type: 'hash', path: 'users[*].id' },
// O(log n) range queries
byAge: { type: 'btree', path: 'users[*].age' },
// Multi-field lookups
byRoleAndDept: {
type: 'compound',
paths: ['users[*].role', 'users[*].department']
}
}
});
// Fast indexed operations
const user = doc.getByIndex('byId', 12345);
const middleAged = doc.rangeByIndex('byAge', 30, 50);Optimization Strategies
TONL includes optimization that YAML cannot match:
| Strategy | Best For | Savings |
|---|---|---|
| Dictionary Encoding | Repeated strings (enums, categories) | 30-50% |
| Delta Encoding | Sequential IDs, timestamps | 40-60% |
| Bit Packing | Booleans, small integers | 87.5% |
| Run-Length Encoding | Consecutive identical values | 50-80% |
Performance Benchmarks
| Metric | YAML | TONL | Improvement |
|---|---|---|---|
| Token Count (100 records) | 3,200 | 1,952 | 39% |
| Encoding Speed | 1.0x | 12-15x | 12-15x faster |
| Decoding Speed | 1.0x | 10x | 10x faster |
| Indexed Lookup (10K records) | O(n) scan | O(1) hash | 1000x+ faster |
| Monthly Cost (10K requests) | $320 | $195 | $1,500/yr |
When to Use Which?
Stick with YAML if:
- You're managing Kubernetes, Docker, or CI/CD configurations.
- Comments are essential for documentation.
- You need anchors and aliases for DRY configuration.
- Multi-document support is required.
- Human editing is the primary use case.
Switch to TONL if:
- You need query capabilities without external tools.
- Schema validation is a requirement.
- You're processing large datasets with streaming.
- Token efficiency matters for LLM costs.
- Fast indexed lookups are needed.
- You want advanced optimization strategies.
Migration Path
import yaml from 'js-yaml';
import { encodeTONL } from 'tonl';
// Convert YAML to TONL
const yamlData = yaml.load(yamlString);
const tonlString = encodeTONL(yamlData);
// With optimization
const optimizedTonl = encodeTONL(yamlData, {
optimize: true,
strategies: ['dictionary', 'delta']
});Final Verdict
YAML remains the standard for DevOps configuration where human editing, comments, and anchors matter. For data-intensive LLM applications requiring queries, validation, streaming, and optimization, TONL provides enterprise-grade capabilities with 39% token savings.
For simpler token optimization without advanced features, see our YAML vs TOON comparison. Learn more about TONL features or explore API cost optimization strategies.